QUANTUMX
 MX410B

Highly dynamic universal amplifier

Special features

- 4 individually configurable inputs (electrically isolated)
- Connection of more than 5 transducer technologies
- Individual sample rates up to 100 kS per channel, 200 kS at 2 channels
- 24-bit A/D converter per channel for synchronous, parallel measurements
- 4 analog outputs
- Real-time computation (Peak, RMS)
- Supply voltage (DC) for active transducers: 5 V ... 24 V

Block diagram

Specifications MX410B

General specifications		
Inputs	number	4, electrically isolated from each other and from supply ${ }^{1 /}$
Transducer technologies per connector		Strain gage, half and full bridge (carrier frequency or DC), Quarter-bridge with 1-SCM-SG120/350, piezoresistive full bridge, IEPE (ICP ${ }^{\circledR}$), Inductive half and full bridge, voltage, normalized voltage ($\pm 10 \mathrm{~V}$), electric voltage up to 300 V CAT II with Adapter-SCM-HV, normalized current (20 mA)
A/D conversion		24-bit delta-sigma converter
Sample rates (Domaine adjustable by software, Factory setting is „HBM Classic)	Hz	Decimal : $0.1 \ldots 100,000$, adjustable for each channel $0.1 \ldots 200,000$ in two-channel mode HBM Classic: $0.1 \ldots 96,000$ adjustable for each channel $0.1 \ldots 192,000$ in two-channel mode
Bandwidth (-3 dB)	kHz	38 78in two-channel mode
Active low pass filter (Bessel/Butterworth, adjustable)	Hz	0.1 ... 20,000
Transducer identification max. TEDS module distance	m	$\begin{gathered} \hline \text { TEDS, IEEE } 1451.4 \\ 100 \end{gathered}$
Transducer connection		D-SUB-15HD
Analog outputs		4 (BNC), electrically isolated to measurement inputs and to supply (not to one another)
Supply voltage range (DC)	V	10 ... 30 (nominal (rated) voltage 24 V)
Supply voltage interruption		max. for 5 ms at 24 V
Power consumption without adjustable transducer excitation with adjustable transducer excitation	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	$\begin{aligned} & <12 \\ & <15 \end{aligned}$
Supply voltage (active transducers) Adjustable transducer excitation (DC) Maximum output power	$\begin{gathered} V \\ W \end{gathered}$	5 ... 24; adjustable channel by channel 0.7 per channel / 2 in total
Ethernet (data link) Protocol/addressing Plug connection Max. cable length to module	m	10Base-T / 100Base-TX TCP/IP (direct IP address or DHCP) 8P8C-modular plug (RJ-45) with twisted pair cable (CAT-5) 100
Synchronization options EtherCAT ${ }^{\circledR 4)}$ IRIG-B (B000 to B007; B120 to B127) IEEE1588 (PTPv2), NTP		IEEE1394b FireWire (only QuantumX, automatically, recommended) via CX27 via MX440A- or MX840A input channel Ethernet based Network Time Protocol
IEEE1394b FireWire (module synchronization, data link, optional supply voltage)		IEEE 1394b (HBM modules only)
Baud rate	MBaud	400 (approx. 50 MBytes/s)
Max. current from module to module	A	1.5
Max. cable length between nodes	m	5
Max. number of modules connected in series (daisy chain)	-	12 (= 11 hops)
Max. number of modules in a IEEE1394b FireWire system (incl. hubs ${ }^{2}$), backplane)	-	24
Max. number of hops ${ }^{3}$	-	14
Nominal (rated) temperature range	${ }^{\circ} \mathrm{C}\left[{ }^{\circ} \mathrm{F}\right]$	$-20 \ldots+65[-4 \ldots+149]$
Storage temperature range	${ }^{\circ} \mathrm{C}$ [$\left.{ }^{\circ} \mathrm{F}\right]$	-40 ... $+75[-40 \ldots+167]$
Relative humidity	\%	$5 . .95$ (non-condensing)
Protection class	-	III
Degree of protection		IP20 per EN60529
Mechanical tests ${ }^{5}$) Vibration (30 min) Shock (6 ms)	$\begin{aligned} & \mathrm{m} / \mathrm{s}^{2} \\ & \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	$\begin{gathered} 50 \\ 350 \end{gathered}$
EMC requirements		per EN 61326
Maximum input voltage at transducer socket to ground (PIN 6 or PIN 9) PIN 1, 2, 3, 4, 5, 7, 8, 10 (bridge and TEDS) PIN 14 (voltage) PIN 13 (current) PIN 4, 15 (control circuits)	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 5.5 \\ \pm 40 \\ \pm 1.5 \\ +3.3 \end{gathered}$

When variable transducer supply is used, there is no electrical isolation from the supply
2) Hub: IEEE1394b FireWire node point or distributor
3) Hop: transition from module to module/signal conditioning
4) EtherCAT ${ }^{\circledR}$ is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany
5) Mechanical stress is tested in accordance with European standards EN60068-2-6 for vibration and EN60068-2-27 for shock. The devices are exposed to an acceleration of $50 \mathrm{~m} / \mathrm{s}^{2}$ within the frequency range $5 \ldots 65 \mathrm{~Hz}$ in all 3 axes. Duration of this vibration test: 30 minutes per axis. The shock test is implemented at a nominal (rated) acceleration of $350 \mathrm{~m} / \mathrm{s}^{2}$ for a duration of 6 ms , half sine and with shocks in each of the six possible directions.

Specifications MX410B (continued)

Dimensions, horizontal (H x W x D)	mm	$52.5 \times 200 \times 122$ (with case protection)
	mm	$44 \times 174 \times 119$ (without case protection)

Strain gage full bridge and half bridge $4 \mathrm{mV} / \mathrm{V}$ CF with excitation 1 V or 2.5 V or 5 V (AC, effective)		
Accuracy class		0.051)
Carrier frequency (sine)	Hz	$4,800 \pm 2$
Bridge excitation voltage (effective)	V	1; 2.5; 5 (± 5 \%)
Transducers that can be connected		Strain gage and inductive full and half bridges
Permissible cable length between MX410B and transducer	m	< 100
Measuring ranges at 5 V excitation at 2.5 V excitation at 1 V excitation	mV / V mV / V mV / V	$\begin{gathered} \pm 4 \\ \pm 8 \\ \pm 20 \end{gathered}$
Additional shunt resistor can be connected (control signal)	$\mathrm{k} \Omega$	$100 \pm 0.1 \%$
Measurement frequency range (-3 dB)	Hz	$0 \ldots$.. 1,600
Transducer impedance at 5 V excitation at 2.5 V excitation at 1 V excitation	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{gathered} 300 \ldots 1,000 \\ 110 \ldots 1,000 \\ 80 \ldots 1,000 \end{gathered}$
Noise at $25^{\circ} \mathrm{C}$ and 5 V excitation (peak to peak) at 1 Hz Bessel filter at 10 Hz Bessel filter at 100 Hz Bessel filter at 1 kHz Bessel filter	$\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$	$\begin{aligned} & <0.1 \\ & <0.2 \\ & <0.5 \\ & <1.5 \end{aligned}$
Linearity error	\%	< 0.02 of full scale value
Zero drift (full bridge with excitation 5 V)	\%/10 K	$<0.02^{1)}$ of full scale value
Full-scale drift (excitation 5 V)	\%/10 K	< 0.05 of measured value

1) with half bridge : 0.1

Strain gage full bridge and half bridge $4 \mathrm{mV} / \mathrm{V}$ DC with excitation 1 V or 2.5 V or 5 V or 7.5 V (DC)		
Accuracy class		0.051)
Bridge excitation voltage (DC)	V	1; 2.5; 5; 7.5 (± 8 \%)
Transducers that can be connected		Strain gage full and half bridges
Permissible cable length between MX410B and transducer	m	<100 (at $\mathrm{U}_{\mathrm{B}}=7.5 \mathrm{~V}$: $<50 \mathrm{~m}$)
Measuring ranges at 7.5 V excitation at 5 V excitation at 2.5 V excitation at 1 V excitation	mV / V mV / V mV / V mV / V	$\begin{gathered} \pm 4 \\ \pm 4 \\ \pm 10 \\ \pm 20 \end{gathered}$
Additional shunt resistor can be connected (control signal)	$\mathrm{k} \Omega$	$100 \pm 0.1 \%$
Measurement frequency range (-3 dB)	Hz	$0 \ldots 39,300$ with $96,000 \mathrm{~Hz}$ sample rate $0 \ldots 78,600$ with $192,000 \mathrm{~Hz}$ sample rate
Transducer impedance at 7.5 V excitation at 5 V excitation at 2.5 V excitation at 1 V excitation	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$\begin{gathered} 300 \ldots 1,000^{2)}(\text { max. } 50 \mathrm{~m} \text { cable }) \\ 300 \ldots 1,000^{2)} \\ 110 \ldots 1,000^{2)} \\ \left.80 \ldots 1,000^{2}\right) \end{gathered}$
Noise at $25^{\circ} \mathrm{C}$ and 5 V excitation (peak to peak) at 1 Hz Bessel filter at 10 Hz Bessel filter at 100 Hz Bessel filter at 1 kHz Bessel filter at 10 kHz Bessel filter at filter Off	$\mu \mathrm{V} / \mathrm{V}$	$\begin{aligned} & <0.15 \\ & <0.3 \\ & <0.6 \\ & <2 \\ & <9 \\ & <10 \end{aligned}$
Linearity error	\%	< 0.02 of full scale value
Zero drift (full bridge with excitation 5 V)	\%/10 K	$<0.05{ }^{1}$) of full scale value
Full-scale drift (excitation 5 V)	\%/10 K	< 0.05 of measured value

1) with half bridge : 0.1
2) Range can be modulated up to $5 \mathrm{k} \Omega$, in this case: up to 1% absolute zero deviation

Specifications MX410B (continued)

Strain gage full bridge and half bridge $100 \mathrm{mV} / \mathrm{V}$ CF with excitation 1 V or 2.5 V (AC, effective)		
Accuracy class		0.051)
Carrier frequency (sine)	Hz	$4,800 \pm 2$
Bridge excitation voltage (effective)	V	1; 2.5; (± 8 \%)
Transducers that can be connected		Strain gage and inductive full and half bridges
Permissible cable length between MX410B and transducer	m	< 100
Measuring ranges at 2.5 V excitation at 1 V excitation	mV / V mV / V	$\begin{aligned} & \pm 100 \\ & \pm 250 \end{aligned}$
Measurement frequency range (-3 dB)	Hz	$0 \ldots 1,600$
Transducer impedance at 2.5 V excitation at 1 V excitation	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{gathered} 110 \ldots 1,000 \\ 80 \ldots 1,000 \end{gathered}$
Noise at $25^{\circ} \mathrm{C}$ and 2.5 V excitation (peak to peak) at 1 Hz Bessel filter at 10 Hz Bessel filter at 100 Hz Bessel filter at 1 kHz Bessel filter	$\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$	$\begin{aligned} & <2 \\ & <4 \\ & <12 \\ & <40 \end{aligned}$
Linearity error	\%	< 0.02 of full scale value
Zero drift (full bridge with excitation 2.5 V)	\%/10 K	$<0.01^{1)}$ of full scale value
Full-scale drift (excitation 2.5 V)	\%/10 K	< 0.05 of measured value

1) with half bridge : 0.1

Piezoresistive strain gage full bridge and half bridge $100 \mathrm{mV} / \mathrm{V}$ DC with excitation 2.5 V or 5 V (DC)		
Accuracy class		0.051)
Bridge excitation voltage (DC)	V	2.5; 5 (± 5 \%)
Transducers that can be connected		Strain gage full and half bridges
Permissible cable length between MX410B and transducer	m	< 100
Measuring ranges at 5 V excitation at 2.5 V excitation	mV / V mV / V	$\begin{gathered} \pm 50 \\ \pm 100 \end{gathered}$
Measurement frequency range (-3 dB)	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$	0 ... 39,300 with $96,000 \mathrm{~Hz}$ sample rate 0 ... 78,600 with $192,000 \mathrm{~Hz}$ sample rate
Transducer impedance at 5 V excitation at 2.5 V excitation	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$	$\begin{aligned} & 300 \ldots 5,000 \\ & 110 \ldots 5,000 \end{aligned}$
Noise at $25^{\circ} \mathrm{C}$ and 5 V excitation (peak to peak) at 1 Hz Bessel filter at 10 Hz Bessel filter at 100 Hz Bessel filter at 1 kHz Bessel filter at 10 kHz Bessel filter at filter Off	$\mu \mathrm{V} / \mathrm{V}$	$\begin{aligned} & <2 \\ & <3 \\ & <8 \\ & <25 \\ & <130 \\ & <150 \end{aligned}$
Linearity error	\%	< 0.02 of full scale value
Zero drift (full bridge with excitation 5 V)	\%/10 K	$<0.03{ }^{1)}$ of full scale value
Full-scale drift (excitation 5 V)	\%/10 K	< 0.05 of measured value

1) with half bridge : 0.1

Specifications MX410B (continued)

Voltage 10 V (DC)		
Accuracy class		0.03
Transducers that can be connected		Voltage sensor $\pm 10 \mathrm{~V}$
Permissible cable length between MX410B and transducer	m	< 100
Measuring range	V	± 10
Measurement frequency range (-3 dB)	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$	$0 \ldots 39,300$ with $96,000 \mathrm{~Hz}$ sample rate $0 \ldots 78,600$ with $192,000 \mathrm{~Hz}$ sample rate
Internal resistance of the connected voltage source	$\mathrm{k} \Omega$	< 5
Input impedance	$\mathrm{M} \Omega$	> 10
Noise at $25^{\circ} \mathrm{C}$ (peak to peak) at 1 Hz Bessel filter at 10 Hz Bessel filter at 100 Hz Bessel filter at 1 kHz Bessel filter at 10 kHz Bessel filter at filter Off	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$	$\begin{aligned} & <25 \\ & <50 \\ & <100 \\ & <300 \\ & <600 \\ & <1,000 \end{aligned}$
Linearity error	\%	< 0.02 of full scale value
Common-mode rejection at DC common-mode at 50 Hz common-mode	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} >100 \\ 75 \end{gathered}$
Max. common-mode voltage (to housing and supply ground)	V	± 60
Zero drift	\%/10 K	< 0.02 of full scale value
Full-scale drift	\%/10 K	< 0.03 of measured value

Current 20 mA (DC)		
Accuracy class		0.03
Transducers that can be connected	m	Transducer with $4 \ldots 20 \mathrm{~mA}$ current output
Permissible cable length between MX410B and transducer	mA	
Measuring range	Hz	<100
Measurement frequency range (-3 dB)	Hz	± 20
Measuring resistance value	Ω	$0 \ldots 39,300$ with $96,000 \mathrm{~Hz}$ sample rate
Noise at 25 ${ }^{\circ} \mathrm{C}$ (peak to peak)		
at 1 Hz Bessel filter		
at 10 Hz Bessel filter		
at 100 Hz Bessel filter		
at 1 kHz Bessel filter		
at 10 kHz Bessel filter		
at filter Off		

Specifications MX410B(continued)

Current-fed piezoelectric transducers (IEPE - Integrated Electronics Piezo Electric, ICP ${ }^{\text {® }}$)		
Accuracy class		0.1
Transducer technology		(BNC adapter available: 1-SUBHD15-BNC)
Permissible cable length between MX410B and transducer	m	< 30
Transducer identification (TEDS, IEEE 1451.4)		only version 1.0
Transducer excitation	mA	$4 \mathrm{~mA} \pm 15 \%$
Measuring ranges (AC)	V	$\pm 2 ; \pm 10$
IEPE Compliance Voltage, typ.	V	21
Measurement frequency range (-3 dB)	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} \end{aligned}$	0 ... 39,300 with $96,000 \mathrm{~Hz}$ sample rate 0 ... 78,600 with $192,000 \mathrm{~Hz}$ sample rate
Noise at $25^{\circ} \mathrm{C}$ and measuring range $\pm 10 \mathrm{~V}$ (peak to peak) at 1 Hz Bessel filter at 10 Hz Bessel filter at 100 Hz Bessel filter at 1 kHz Bessel filter at 10 kHz Bessel filter at filter Off	$\begin{aligned} & \mu V \\ & \mu V \end{aligned}$	$\begin{aligned} & <25 \\ & <50 \\ & <100 \\ & <300 \\ & <600 \\ & <1,000 \end{aligned}$
Linearity error	\%	< 0.1 of full scale value
Common-mode rejection at DC common-mode at 50 Hz common-mode, typically	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} >100 \\ 75 \end{gathered}$
Max. common-mode voltage (to housing and supply ground)	V	± 60
Zero drift	\%/10 K	< 0.1 of full scale value
Full-scale drift	\%/10 K	< 0.05 of output value

Analog outputs				
Accuracy class		0.05		
Number of outputs		4 (input1 to output1 etc.)		
Type of connection	m	BNC		
Max. cable length	kHz	<30		
Bandwidth	kHz	Defined by the input signal filter		
Output rate max.	V	576		
Nominal (rated) voltage		± 10		
Reference signal	Common ground for all outputs, electrically isolated from supply			
and measurement inputs			$]$	16
:---				
D/A converter resolution				
Noise (peak to peak)				
Permissible load impedance				
Crosstalk attenuation				
Min. settling time				
Zero drift				

Real-time computation on the module		
Root-mean-square unit (RMS)		
Peak-value unit		4
Number of peak values	Hz	8
Max. output rate	4800	

Decimal sample rates and digital low pass filter, type Bessel
($4^{\text {th }}$ order Bessel with sample rate $<100,000 \mathrm{~Hz} ; 6^{\text {th }}$ order with sample rate $=100,000 \mathrm{~Hz}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phjase delay ${ }^{*}$ (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
$\begin{aligned} & \bar{\otimes} \\ & \underset{\sim}{\otimes} \\ & \infty \end{aligned}$	20,616	30,000	44,600	0,002	0.01	2.8	100,000
	12,373	20,000	43,000	0.005	0.02	1.0	100,000
	5917	10,000	23,465	0.021	0.04	0.8	100,000
	2929	5000	11,715	0.06	0.07	0.8	100,000
	1164	2000	4700	0.19	0.2	0.8	100,000
	584	1000	2350	0.40	0.3	0.6	100,000
	292	500	1175	0.82	0.7	0.6	100,000
	117	200	470	2.1	1.7	0.6	100,000
	58	100	235	4.2	3.5	0.6	100,000
	29.2	50	117.5	8.5	7	0.6	100,000
	11.7	20	47	21.3	17	0.6	100,000
	5.8	10	23.5	42.7	35	0.6	100,000
	2.91	5	11.74	85.5	70	0.6	100,000
	1.19	2	5.04	187	175	0.9	1000
	0.59	1	2.54	351	350	0.8	1000
	0.30	0.5	1.27	680	700	0.8	1000
	0.12	0.2	0.51	1669	1751	0.8	1000
	0.06	0.1	0.25	3315	3499	$0 . .8$	1000

${ }^{*}$) The analog-to-digital converter's delay time is 277μ s for all sample rates and has not been accounted for in the "Phase delay" column!

Decimale sample rates : Bessel filter amplitude response

Decimal sample rates and digital low pass filter, type Butterworth
($4^{\text {th }}$ order Butterworth with sample rate $<100,000 \mathrm{~Hz} ; 6^{\text {th }}$ order with sample rate $=100,000 \mathrm{~Hz}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phjase delay ${ }^{\text { }}$) (ms)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
	28,269	30,000	35,359	0.02	0.02	193	100,000
	18,328	20,000	26,009	0.03	0.03	17.6	100,000
	8994	10,000	14,155	0.06	0.04	15.5	100,000
	4475	5000	7265	0.1	0.09	15	100,000
	1787	2000	2929	0.3	0.2	14	100,000
	894	1000	1466	0.7	0.4	14	100,000
	447	500	733	1.3	0.8	14	100,000
	179	200	293	3.3	2	14	100,000
	89	100	147	6.6	4	14	100,000
	44.7	50	73.3	13	8	14	100,000
	17.9	20	29.3	33	21	14	100,000
	8.9	10	14.7	66	43	14	100,000
	4.47	5	7.33	132	85	14	100,000
	1.69	2	3.55	248	194	11	1000
	0.84	1	1.78	471	387	11	1000
	0.42	0.5	0.89	921	774	11	1000
	0.17	0.2	0.35	2266	1934	11	1000
	0.08	0.1	0.18	4510	3869	11	1000

${ }^{*}$) The analog-to-digital converter's delay time is 277μ for all sample rates and has not been accounted for in the "Phase delay" column!

Decimale sample rates: Butterworth filter amplitude response

Decimal sample rates and digital low pass filter, (two-channel mode), type Bessel
($4^{\text {th }}$ order with sample rate $<\mathbf{2 0 0 , 0 0 0} \mathrm{Hz} ; 6^{\text {th }}$ order with sample rate $=\mathbf{2 0 0 , 0 0 0 ~ H z}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phase delay (ms) ${ }^{\text {a }}$)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
©©$\infty$$\infty$	41,232	60,000	89,200	0.001	0.005	2.8	200,000
	24,746	40,000	86,000	0.0025	0.01	1.0	200,000
	11,834	20,000	46,930	0.01	0.02	0.8	200,000
	5858	10,000	23,430	0.03	0.035	0.8	200,000
	2328	4000	8400	0.09	0.1	0.8	200,000
	1168	2000	4700	0.40	0.15	0.6	200,000
	584	1000	2350	0.82	0.35	0.6	200,000
	234	400	940	2.1	0.85	0.6	200,000
	116	200	470	4.2	1.75	0.6	200,000
	58.4	100	235	8.5	3.5	0.6	200,000
	23.4	40	94	21.3	8.5	0.6	200,000
	11.6	20	47	42.7	17.5	0.6	200,000
	5.82	10	23.48	85.5	35	0.6	200,000
	2.38	4	10.08	187	87.5	0.9	1000
	1.18	2	5.08	351	175	0.8	1000
	0.60	1	2.54	680	350	0.8	1000
	0.24	0.4	1.02	1669	875	0.8	1000
	0.12	0.2	0.50	3315	1750	$0 . .8$	1000

${ }^{*}$) The analog-to-digital converter's delay time is 140μ s for all sample rates and has not been accounted for in the "Phase delay" column!

Decimal sample rates and digital low pass filter, (two-channel mode), type Butterworth (4 ${ }^{\text {th }}$ order with sample rate $<200,000 \mathrm{~Hz}$; $\mathbf{6}^{\text {th }}$ order with sample rate $=200,000 \mathrm{~Hz}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phase delay (ms) ${ }^{\text {\% }}$	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
ㄷ0Z0000	56,538	60,000	70,718	0.01	0.01	193	200,000
	36,656	40,000	52,018	0.015	0.015	17.6	200,000
	17,988	20,000	28,310	0.03	0.02	15.5	200,000
	8950	10,000	14,530	0.05	0.045	15	200,000
	3576	4000	5858	0.15	0.1	14	200,000
	1788	2000	2932	0.35	0.2	14	200,000
	894	1000	1466	0.65	0.4	14	200,000
	358	400	586	1.65	1	14	200,000
	178	200	294	3.3	2	14	200,000
	89.4	100	147	6.5	4	14	200,000
	35.8	40	59	16.5	10.5	14	200,000
	17.8	20	29.4	33	21.5	14	200,000
	8.94	10	14.66	66	42.5	14	200,000
	3.38	4	7.1	124	97	11	1000
	1.68	2	3.6	235	193	11	1000
	0.84	1	1.78	460	387	11	1000
	0.34	0.4	0.70	1133	967	11	1000
	0.16	0.2	0.36	2255	1934	11	1000

${ }^{*}$) The analog-to-digital converter's delay time is 140μ s for all sample rates and has not been accounted for in the "Phase delay" column!

Classic HBM sample rates and digital low pass filter, type Bessel
($4^{\text {th }}$ order with sample rate $<96,000 \mathrm{~Hz} ; 6^{\text {th }}$ order with sample rate $=96,000 \mathrm{~Hz}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phase delay (ms) ${ }^{\text {a }}$)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
$\begin{aligned} & \overline{0} \\ & \text { © } \\ & \infty \\ & \hline \end{aligned}$	20,000	29,250	43,000	0.002	0.016	4.1	96,000
	10,000	16,810	40,260	0.008	0.023	1.5	96,000
	5000	8510	19,906	0.027	0.042	0.9	96,000
	2000	3515	8275	0.094	0.1	0.6	96,000
	1000	1715	4070	0.22	0.2	0.6	96,000
	500	852	2008	0.47	0.41	0.6	96,000
	200	341	803	1.22	1.01	0.8	96,000
	100	171	402	2.5	2.01	0.8	96,000
	50	84.2	215	4	4.08	1	19,200
	20	33.7	86	10	10.2	1	9600
	10	16.9	43	20	20.6	1	9600
	5	8.41	21.5	40	41	1	4800
	2	3.37	8.6	98	102.8	1	1200
	1	1.58	4.3	196	206.4	1	600
	0.5	0.84	2.15	392	411.2	1	600
	0.2	0.34	0.86	982	1026	1	300
	0.1	0.17	0.43	1968	2052	1	150

${ }^{*}$) The delay of the A/D converter is 293μ s for all sample rates. it has not been accounted for in the "Phase delay" column!

Classic HBM sample rates and digital low pass filter, type Butterworth
($4^{\text {th }}$ order with sample rate $<96,000 \mathrm{~Hz} ; 6^{\text {th }}$ order with sample rate $=96,000 \mathrm{~Hz}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phase delay (ms) ${ }^{*}$)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
등00000	20,000	21,700	27,500	0.025	0.02	15.6	96,000
	10,000	11,100	15,500	0.06	0.04	15.6	96,000
	5000	5585	8100	0.13	0.08	14.5	96,000
	2000	2238	3280	0.3	0.2	14.5	96,000
	1000	1119	1640	0.6	0.4	14.5	96,000
	500	560	820	1.2	0.8	14.5	96,000
	200	237	420	2.1	1.6	11	19,200
	100	118	210	4	3.3	11	19,200
	50	59	105	7.8	6.6	11	19,200
	20	24	42	19.4	16.1	11	4800
	10	11.8	21	38.6	32.4	11	2400
	5	5.9	10.5	76.5	65	11	1200
	2	2.4	4.2	191	163	11	600
	1	1.2	2.1	382	325	11	300
	0.5	0.59	1.05	760	653	11	300
	0.2	0.24	0.42	1900	1630	11	150
	0.1	0.12	0.21	3790	3260	11	150

[^0]Classical HBM sample rates and active low pass filter sample (two-channel mode), type Bessel
($4^{\text {th }}$ order with sample rate $<192,000 \mathrm{~Hz} ; 6^{\text {th }}$ order with sample rate $=192,000 \mathrm{~Hz}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phase delay (ms) ${ }^{*}$)	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
$\begin{aligned} & \bar{\otimes} \\ & \mathbb{N} \\ & \varnothing \sim \end{aligned}$	40,000	58,500	86,000	0.001	0.008	1.6	192,000
	20,000	33,620	80,520	0.004	0.012	1.5	192,000
	10,000	17,020	39,812	0.0135	0.021	0.9	192,000
	4000	7030	16,550	0.047	0.05	0.6	192,000
	2000	3430	8140	0.11	0.1	0.6	192,000
	1000	1704	4016	0.235	0.21	0.6	192,000
	400	682	1606	0.61	0.51	0.8	192,000
	200	342	804	1.25	1.00	0.8	192,000
	100	168.4	430	2	2.04	1	19,200
	40	67.4	172	5	5.1	1	19,200
	20	33.8	86	10	10.3	1	19,200
	10	16.82	43	20	20.5	1	9600
	4	6.74	17.2	49	51.4	1	2400
	2	3.36	8.6	98	103.2	1	1200
	1.0	1.68	4.3	196	205.6	1	1200
	0.4	0.68	1.72	491	513	1	600
	0.2	0.34	0.86	984	1026	1	300

${ }^{*}$) The delay of the A/D converter is 141μ s for all sample rates, it has not been accounted for in the "Phase delay" column!

Classical HBM sample rates and active low pass filter sample (two-channel mode), type Butterworth
($4^{\text {th }}$ order with sample rate $<192,000 \mathrm{~Hz} ; 6^{\text {th }}$ order with sample rate $=192,000 \mathrm{~Hz}$)

Type	-1dB (Hz)	-3dB (Hz)	-20dB (Hz)	Phase delay (ms) ${ }^{\text {\% }}$	Rise time (ms)	Overshoot (\%)	Sample rate (Hz)
	40,000	43,400	55,000	0.013	0.01	17.8	192,000
	20,000	22,200	31,000	0.03	0.02	15.6	192,000
	10,000	11,170	16,200	0.07	0.04	14.5	192,000
	4000	4476	6560	0.15	0.1	14.5	192,000
	2000	2238	3280	0.3	0.2	14.5	192,000
	1000	1120	1640	0.6	0.4	14.5	192,000
	400	474	840	1.05	0.8	14.5	19,200
	200	236	420	2	1.65	11	19,200
	100	118	210	3.9	3.3	11	19,200
	40	48	84	9.7	8.05	11	9600
	20	23.6	42	19.3	16.2	11	4800
	10	11.8	21	38.3	32.5	11	2400
	4	4.8	8.4	95.5	81.5	11	1200
	2	2.4	4.2	191	162.5	11	600
	1	1.18	2.1	380	326.5	11	600
	0.4	0.48	0.84	950	815	11	300
	0.2	0.24	0.42	1895	1630	11	300

[^1]
Specifications NTX001 power pack

NTX001		
Nominal (rated) input voltage (AC)	V	$100 \ldots 240$ (± 10 \%)
No-load power consumption at 230 V	W	0.5
Nominal (rated) loading U_{A} I_{A}	$\begin{aligned} & \text { V } \\ & \text { A } \end{aligned}$	$\begin{gathered} 24 \\ 1.25 \end{gathered}$
Static output data ```UA IA U ```	$\begin{gathered} \mathrm{V} \\ \mathrm{~A} \\ \mathrm{mV} \end{gathered}$	$\begin{gathered} 24 \pm 4 \% \\ 0 \ldots 1.25 \\ \leq 120 \end{gathered}$
Current limiting, typically from	A	1.6
Isolation primary - secondary		electrical, by optical coupler and converter
Creepage and clearance distances	mm	≥ 8
High-voltage test	kV	≥ 4
Ambient temperature	${ }^{\circ} \mathrm{C}$	$0 \ldots+40[32 \ldots+104]$
Storage temperature	${ }^{\circ} \mathrm{C}$	$-40 \ldots+70[-40 \ldots+158]$

Accessories MX410B, to be ordered separately

MX410B accessories		
Article	Description	Order No.
Power		
AC-DC power supply / 30 W	Input : 100 ... $240 \mathrm{~V} \mathrm{AC}(\pm 10 \%), 1.5 \mathrm{~m}$ cable Output: 24 V DC, max. 1.25 A, 2 m cable with ODU connector	1-NTX001
3 m cable - Quantum X supply	3 m cable for voltage supply of QuantumX modules; Suitable plug (ODU Medi-Snap S11M08-P04MJGO-5280) on one side and open strands on the other end.	1-KAB271-3
Communication		
Ethernet cable	Ethernet patch cable for direct operation between a PC or Notebook and a module / device, length 2 m , type CAT6A	1-KAB239-2
IEEE1394b FireWire cable (module-tomodule)	FireWire connection cable for QuantumX or SomatXR-modules; with matching plugs on both sides. Length 0.2 m (angled) $/ 2 \mathrm{~m} / 5 \mathrm{~m}$ Note: The cable enables modules to be supplied with power (max. 1.5 A, from the source to the last drain).	$\begin{aligned} & \text { 1-KAB272-W-0.2 } \\ & \text { 1-KAB272-2 } \\ & \text { 1-KAB272-5 } \end{aligned}$

Accessories MX410B, to be ordered separately (continued)

Accessories MX410B		
Article	Description	Order No.
Mechanic		
Connecting elements for QuantumX modules	Connecting elements (clips) for QuantumX modules; Set comprising 2 case clips including mounting material for fast connection of 2 modules.	1-CASECLIP
Connecting elements for QuantumX modules	Fitting panel for mounting of QuantumX modules using case clips (1-CASECLIP), lashing strap or cable tie. Basic fastening by 4 screws.	1-CASEFIT
QuantumX Backplane (small)	QuantumX Backplane - for a maximum of 5 modules; - Connection of external modules by FireWire possible - Power supply: 24 V DC / max. 3.75 A (90 W)	1-BPX003
QuantumX Backplane (big)	QuantumX Backplane - for a maximum of 9 modules - Mounting on wall or control cabinet (19") - Connection of external modules by FireWire possible - Power supply: 24 V DC / max. 5 A (150 W)	1-BPX001
QuantumX Backplane (Rack)	QuantumX Backplane - Rack for maximum 9 modules; - 19" rack mounting with handles left and right; - Connection of external modules via FireWire possible; - Power supply: 24 V DC / max. 5 A (150 W).	1-BPX002
Transducer side		
120 ohm strain gauge quarter bridge module	Signal conditioning of strain gauge quarter bridge at QuantumX full bridge input. Integrated 120 -ohm completion resistor; soldering points for transducer cable (3 wire); TEDS; D-Sub-HD device connection.	1-SCM-SG120
350 ohm strain gauge quarter bridge module	Signal conditioning of strain gauge quarter bridge at QuantumX full bridge input. Integrated 350 -ohm completion resistor; soldering points for transducer cable (3 wire); TEDS; D-Sub-HD device connection.	1-SCM-SG350
1000 ohm strain gauge quarter bridge module	Signal conditioning of strain gauge quarter bridge at QuantumX full bridge input. Integrated 1000-ohm completion resistor; soldering points for transducer cable (3 wire); TEDS; D-Sub-HD device connection.	1-SCM-SG1000
High-voltage signal conditioner	High-voltage signal conditioner for differential measurement of voltages up to 300 V CAT II with type MX840A/B, MX410/B and MX440A/B QuantumX modules, with SubHD connector and fixed, 1-m-long measuring leads with 4-mm laboratory plugs.	1-SCM-HV
DSubH 15-pol. to-BNC pole adapter	Adapter for QuantumX, BNC socket to SubHD 15-pole (pin 14), for connecting $60 \mathrm{~V},+/ 10 \mathrm{~V}$ or IEPE / ICP ${ }^{\circledR}$), provided that the amplifier supports this function	1-SUBHD15-BNC
DSubHD 15-pole connector kit with TEDS chip	DSubHD 15-pole connector kit (male) with TEDS chip for storage of a sensor data sheet; Housing: Metallized plastic with knurled screws. Note: The TEDS chip comes blank.	1-SUBHD15-MALE
TEDS-Package (10 piece)	Package of TESDS chips. Package of 10 1-wire-EEPROM DS24B33 (IEEE 1451.4 TEDS)	1-TEDS-PAK
Port saver, SubHD 15 pol.	$4 \times$ D-SUB HD 15 pin male to female port savers; protecting the wear and tear for frequent plugging and unplugging. Extends contact durability by min. 500. Adaptor attaches securely with screws 4-40 UNC.	1-SUBHD15-SAVE

Accessories MX410B，to be ordered separately（continued）

Accessories MX410B		
Article	Description	Order No．
Software and product packages		
catman ${ }^{(\mathbb{E}} A P$	Complete package including catman ${ }^{(k)}$ Easy functionality plus additional modules such as integration of video cam－ eras（EasyVideoCam），complete post－process analysis （EasyMath），automation of recurring processes （EasyScript），offline preparation of measurement projects （EasyPlan）as well as additional functions such as calculat－ ing electrical power，special filters，frequency spectrum，etc． More details at www．hbm．comlcatman	1－CATMAN－AP
catman ${ }^{(k)}$ Easy	The basic software package for measurement data acquisi－ tion comprises convenient channel parameterization using TEDS or the sensor database，measurement job parame－ terization，individual visualization，data storage and report－ ing．	1－CATMAN－EASY
catman ${ }^{(B)}$ PostProcess	Post Process edition for visualization，preparation and anal－ ysis of measurement data，including many mathematical functions，data export and reporting．	1－CATEASY－PROCESS
MX410B＋catman ${ }^{(\mathbb{B}}$ EASY	Package including： －MX840B amplifier（1－MX840B） －Power supply（1－NTX001） － 8 transducer plugs with TEDS（1－SUBHD15－MALE） －Ethernet Cross－over cable（1－KAB239－2） －catman®Easy software from HBM（1－CATMAN－EASY） －Including software maintenance for the first 12 months	1－MX410B－PAKEASY
M 4 410B＋catman ${ }^{\left({ }^{\text {E }} \mathrm{AP}\right.}$	Package including： －MX840B amplifier（1－MX840B） －Power supply（1－NTX001） － 8 transducer plugs with TEDS（1－SUBHD15－MALE） －Ethernet Cross－over cable（1－KAB239－2） －catman®AP software from HBM（1－CATMAN－AP） －Including software maintenance for the first 12 months	1－MX410B－PAKAP
LabVIEW ${ }^{\text {TM }}$－Treiber ${ }^{1}$ ）	Universal driver from HBM for LabVIEW ${ }^{\text {IM }}$ ．	1－LabVIEW－DRIVER
CANape ${ }^{(\mathbb{B})}$ driver	QuantumX driver for the software CANape ${ }^{(\mathbb{B})}$ from Vector Informatik．CANape versions from 10.0 are supported．	1－CANAPE－DRIVER

1）More drivers and partners at www．hbm．comlquantum X X

Subject to modifications．
All product descriptions are for general information only．They are not to be understood as a guarantee of quality or durability．

托驰（上海）工业传感器有限公司
上海市嘉定区华江路348号1号楼707室
电话：＋86 02151069888
传真：＋86 02151069009
邮箱：zhang＠yanatoo．com
网址：www．sensor－hbm．com

[^0]: ${ }^{*}$) The delay of the A/D converter is 293μ s for all sample rates. it has not been accounted for in the "Phase delay" column!

[^1]: ${ }^{*}$) The delay of the A/D converter is 141μ s for all sample rates, it has not been accounted for in the "Phase delay" column!

